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This paper describes how the collocation technique previously developed by the 
authors for treating both unbounded (Gluckman, Pfeffer & Weinbaum 1971; Leicht- 
berg, Weinbaum, Pfeffer & Gluckman 1976) and bounded (Leichtberg, Pfeffer & 
Weinbaum 1976) multiparticle axisymmetric Stokes flows can be extended to handle 
a wide variety of non-axisymmetric creeping-motion problems with planar symmetry 
where the boundaries conform to more than a single orthogonal co-ordinate system. 
The present paper examines in detail the strong hydrodynamic interaction between 
two or more closely spaced identical spheres in a plane. The various two-sphere con- 
figurations provide a convenient means of carefully testing the accuracy and con- 
vergence of the numerical solution technique for three dimensional flow with known 
exact spherical bipolar solutions. 

The important difficulty encountered in applying the collocation technique to multi- 
particle non-axisymmetric flows is that the selection of boundary points is rather 
sensitive to the flow orientation. Despite this shortcoming one is able to obtain solu- 
tions for the quasi-steady particle velocities and drag for as many as 15 spheres in less 
than 30 s on an IBM 3701168 computer. The method not only gives accurate global 
results, but is able to predict the local fluid velocity and to resolve fine features of the 
flow such as the presence of separated regions of closed streamlines. Time-dependent 
numerical solutions are also presented for various three-sphere assemblages falling in a 
vertical plane. These solutions, in which the motion of each sphere is traced for several 
hundred diameters, are found to be in very good agreement with experimental meas- 
urements. The concluding section of the paper describes how the present collocation 
procedure can be extended to a number of important unsolved three-dimensional 
problems in Stokes flow with planar symmetry such as the arbitrary off-axis motion of 
a sphere in a circular cylinder or between parallel walls, or the motion of a neutrally 
buoyant particle a t  the entrance to a slit or pore. 

1. Introduction 
The purpose of the present paper is to develop the rudiments of an efficient numeri- 

cal solution technique which could be used to treat a wide variety of previously un- 
solved non-axisymmetric creeping-motion problems with planar symmetry where the 
boundaries conform to more than a single orthogonal co-ordinate surface. Some salient 
examples of such motion include the settling of three or more closely spaced spheres in 
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a plane, the arbitrary off-axis motion of a sphere in a circular cylinder or a channel, the 
tumbling of a spheroid near a planar boundary, and the entrance motionof a sphere into 
a circular pore or a two-dimensional slit. Problems with strong hydrodynamic inter- 
action of this nature are not easily tractable by perturbation or method-of-reflexion 
techniques. The two principal difficulties are the slow algebraic decay of three-dimen- 
sional disturbances in Stokes flow and the slow convergence properties of an iterative 
solution scheme when the leading term differs greatly from the desired converged 
solution. 

In  the past few years several important advances have been made in the numerical 
treatment of some of the more complicated boundary-value problems in Stokes flow. 
These advances, with the exception of the numerical investigation of Youngren & 
Acrivos (1975), have been limited to axisymmetric motions. For these motions the 
simplification afforded by the Stokes stream function allows one to reduce the govern- 
ing equation for quasi-steady creeping motion to the compact form D2D2$ = 0. The 
first highly accurate numerical solutions of this equation by collocation techniques 
were presented by Skalak and co-workers for several different flow problems involving 
an infinite array of identical particles periodically spaced along the axis of a circular 
cylinder. Approximate collocation procedures had previously been used by 0 'Brien 
(1968) and others with varying degrees of success. Wang & Skalak (1969), Chen & 
Skalak (1970) and Hyman & Skalak (1972) considered periodic coaxial arrays of 
spheres, spheroids and spheroidal bubbles respectively. This problem was then further 
generalized to an infinite periodic array of arbitrarily shaped axisymmetric particles 
using a finite-element approach in Skalak, Chen & Chien (1972). These studies of 
bounded periodic cells were largely motivated by an attempt to model the flow of red 
cells in the microcirculation. 

The interests of the present authors have focused more on time-dependent multi- 
particle Stokes' flow interactions. For flow problems of this nature one needs rapidly to 
compute the flow field and quasi-steady drag resulting from the instantaneous inter- 
action of a finite array of particles with arbitrary spacing and velocity. To this end the 
authors have developed in several previous papers a boundary or collocation tech- 
nique which can be applied to both unbounded and bounded axisymmetric flows past 
arbitrary coaxial configurations of spheres and spheroids. The technique developed is 
capable of calculating in a few seconds on an IBM 3701168 computer both the instan- 
taneous drag and the instantaneous velocity field for as many as 100 spheres or 15 
spheroids in unbounded flow with an accuracy for the drag on each particle of better 
than 0.1 yo (Gluckman et al. 1971). For unbounded axisymmetric flow the selection of 
boundary points is not critical except for very close spBcings (less than 0.1 diameters), 
where a judicious selection of boundary points near the axis (Leichtberg, Weinbaum, 
Pfeffer & Gluckman 1976) allows extension of the range of validity to less than 10-4 
diameters with little change in computational time. The method has recently been 
extended to an arbitrary coaxial array of spheres in a circular cylinder (Leichtberg, 
Pfeffer & Weinbaum 1976 ), but the computational times required are about two orders 
of magnitude larger than for the equivalent unbounded case. 

The great rapidity with which the unbounded quasi-steady solutions can be obtained 
for small sphere clusters (in about s for three or four spheres on an IBM 370/168) 
has made it possible to follow the time-dependent interaction of small coaxial group- 
ings of spheres over hundreds of diameters and carefully document the importance of 
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both the unsteady virtual-mass force and the Basset force (the force which arises from 
the time history of the W f a t  term in the unsteady Stokes-flow equation) in multi- 
particle flows when the flow configuration is slowly changing owing to particle inter- 
actions (Leichtberg, Weinbaum, Pfeffer & Gluckman 1976). 

In another, biologically related paper (Leichtberg, Weinbaum & Pfeffer 1976) the 
authors model the time-dependent multiparticle hydrodynamic interaction leading to 
the aggregation of identical red cells (rouleaux) in the microcapillaries by following the 
time-dependent motion of identical spheres along the axis of an unbounded Poiseuille 
profile. 

The particles in all the foregoing axisymmetric investigations have been represented 
by a truncated series of internal singularities derived from the separable solutions of 
D2D2@ = 0 in the appropriate co-ordinate system. For an arbitrary boundary shape 
one must resort to either finite-difference or finite-element solutions of the entire 
flow field or represent the body by a surface distribution of singularities (Gluckman, 
Weinbaum & Pfeffer 1972; Youngren & Acrivos 1975). In  Gluckman et al. (1972) the 
flow past an arbitrary convex body of revolution is treated using a surface distribution 
of spheroidal singularities of vanishing aspect ratio. The integral equation describing 
this surface distribution is solved using a collocation procedure equivalent to that 
previously developed by the authors for axisymmetric multiparticle flow. Youngren & 
Acrivos (1975) present the first numerical solution procedure capable of handling the 
creeping flow past an arbitrary isolated three-dimensional body. The flow disturbance 
produced by the body is formulated as an integral equation whose kernel is the funda- 
mental Stokeslet solution of the creeping-motion equation in three dimensions. This 
integral equation is solved numerically by dividing the body surface into a finite 
number of discrete elements in each of which the Stokeslet strength is assumed con- 
stant. 

The integral-equation technique of Youngren & Acrivos is a very promising new 
approach for treating irregular boundary problems in creeping motion such as the flow 
past deforming flexible particles and bubbles. However, for a wide variety of three- 
dimensional problems in Stokes flow when each boundary conforms to a different 
orthogonal co-ordinate surface (such as the various examples cited a t  the beginning of 
this introduction), it is computationally more efficient to develop collocation tech- 
niques similar to those just summarized for axisymmetric flow. This approach would 
take advantage of the various known separable solutions of the Stokes equations in 
three dimensions. The basic departure from axisymmetric flow is that the fundamental 
solutions are given in terms of the components of the velocity field rather than a Stokes 
stream function. These fundamental solutions for the velocity field are known for 
rectangular, cylindrical, spherical (Lamb 1945, p. 594) and spheroidal (Jeffery 1922) 
co-ordinates. In  theory, the present method could be applied to bounded flow prob- 
lems where the particles do not conform to natural co-ordinate surfaces using the 
extensions developed in Gluckman et al. (1972) for axisymmetric flow. However, in 
practice computation times would be prohibitively long. The more general integral- 
equation approach of Youngren & Acrivos would be more practical for these 
problems. 

A cardinal rule for the successful application of the collocation technique is that the 
velocity disturbance produced by each co-ordinate boundary may be represented by 
an ordered sequence of fundamental solutions appropriate to the constant orthogonal 
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co-ordinate surface to be described. As demonstrated in the appendix to Gluckman 
et at. (1972), the numerical solution can oscillate unstably as the number of collocation 
points is increased if an inappropriate set of fundamental solutions is used. 

Many previously unsolved three-dimensional flows can be constructed from a 
superposition of two or more truncated series of fundamental solutions from the four 
basic co-ordinate systems mentioned in the last paragraph. Only minor modifications 
of the basic collocation scheme described herein for multiple spheres are required to 
treat spheroids instead of spheres or to combine spheres of different sizes; see Gluck- 
man et al. (1971), where the equivalent problem is treated for axisymmetric flow. Also, 
as outlined in the concluding section, the important extension from unbounded to 
bounded flow, while very laborious because of the co-ordinate transformations in- 
volved, is straightforward and follows the same general procedure as has already been 
performed for axisymmetric flow in Leichtberg, Pfeffer & Weinbaum (1976). The exact 
no-slip boundary conditions are imposed along the boundaries of the system, whether 
they be that of a plane, channel or circular cylinder, and the problem is reduced to a 
collocation procedure applied along the boundaries of each particle. For all the above 
reasons the logical starting point in the development of a collocation technique for 
three-dimensional flows is the basic interaction between two or more spheres using 
Lamb’s (1945, p. 594) spherical-harmonic series solutions for each sphere. The two- 
sphere problem is itself of special importance since it will enable us carefully to examine 
the accuracy and convergence of the three-dimensional collocation technique by com- 
parison with exact spherical bipolar solutions. This comparison is essential since the 
difficulty in constructing a collocation technique is not its formulation, which is 
conceptually simple, but the detailed development of the truncation. While there is no 
assurance that the treatment of boundary points for two spheres can be carried over to 
three or more spheres, the detailed comparison with experiment (described in $5) and 
with previous multisphere axisymmetric solutions provides some confidence that this 
is indeed the case. 

Although the primary motivation for this paper is to lay the foundations for a more 
general numerical treatment of bounded three-dimensional creeping motions, it is 
worth mentioning that the current study is, to the authors’ knowledge, the first strong- 
interaction theory for the non-axisymmetric motion of three or more spheres. Many of 
the flow configurations described in $ 5 have been observed experimentally by Jaya- 
weera, Mason & Slack (1964) and studied theoretically in a qualitative manner using a 
weak-interaction first-order reflexion theory by Hocking ( 1964). 

Section 2 contains the mathematical formulation of the basic collocation technique 
for an arbitrary planar configuration of N spheres. In  $ 3  solutions obtained by this 
method are compared with the exact solutions of Stimson & Jeffery (1926) for two 
equal spheres moving parallel to their line of centres and Goldman, Cox & Brenner 
(1966) for two equal spheres in an arbitrary orientation. Solutions for instantaneous 
configurations of three or more spheres are presented in $ 4. In  $ 5 quasi-steady time- 
dependent solutions are presented for the trajectories of three spheres settling in a 
vertical plane starting from various initial configurations. Finally, in $ 6 the extension 
of the collocation technique to bounded three-dimensional flows with planar sym- 
metry is discussed. 
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2. Formulation for multiple spheres 
In  accord with the comments in the introduction we consider the slow motion of a 

finite number of equal spheres in an arbitrary asymmetric planar configuration. 
Consider the steady-state creeping-motion governing equations 

pv2v = v p ,  v.v = 0, ( 2 . l a ,  b )  

where the symbols have their usual meaning. The fundamental solution of (2 .1 )  which 
is capable of describing an arbitrary disturbance on the surface of a sphere of radius a is 
given in Happel & Brenner (1973,  p. 65)  : 

Here ~-(,+d, 
and r is the radial position vector, whose origin is at  the centre of the sphere. 

the linear superposition of N solutions for an individual particle yields 

and P-(,+,) are solid spherical harmonic functions of order - (n + 1) 

For the simplest case of N spheres moving slowly in an unbounded quiescent fluid, 

where r5, ej and q5j are spherical co-ordinates measured from the centre of the j t h  
sphere. Equation ( 2 . 3 )  will be generalized in $6 to include an incident stream and con- 
fining walls. 

In  general, the three solid spherical harmonic functions in (2 .3 )  have the following 
form : 

where P,” is the associated Legendre function, Q = cos S j  and Aim,, . . . , TwLn are un- 
known constants which are determined from boundary conditions. 

If we now restrict the N spheres to fall freely under gravity in the vertical plane 
y = 0 as shown in figure 1, the symmetry of the flow about this plane requires that 

Aj,, = Dj,, = qmn = 0. (2 .5 )  

To perform the operations indicated by ( 2 . 3 )  we express the r j ,  Ci and $ j  in terms of a 
single rectangular co-ordinate system as shown in figure 1 ,  i.e. 

r: = (s - bj)2 + y2+ ( z  - dj )2 ,  ( 2 . 6 ~ )  

z - d .  z - a j  5.  = ’ - - 
r j  [(s - b j )2  + y2 + ( z  - dj)2]Jz ’ 3 (2 .6b )  

tan gj = y/(s - b j ) ,  ( 2 . 6 ~ )  

where bj and d j  are the x and z co-ordinates of the j th  sphere’s centre respectively. 
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FIGURE 1. Geometry for system of spheres falling freely in a vertical plane. 

If u, v and w denote the components of the fluid velocity V in the x, y and z directions 
respectively, the no-slip boundary conditions which must be satisfied on the surface of 
each sphere are 

uIrjza = q+awjcos8,, ( 2 . 7 ~ )  

= 0, (2 .7b )  

( 2 . 7 ~ )  

and oj represent the unknown horizontal, 

The hydrodynamic force and torque exerted on thejth sphere are given by Happel &, 

F, = - 4nV(eP-,) (2 .80)  

Tj = - 87r,uV(r;X-,). (2 .8b )  

3 -  

w ( ~ ~ = ~  = F. - aoj sin 8, cos d j ,  
where a is the radius of each sphere and q, 
vertical and angular velocity of the j t h  sphere respectively. 

Brenner (1973, p. 6 7 )  as 

and 

Substituting (2.4)-(2.6) into (2.8) gives the simple result 

and 
F, = - 47r[Ejll P + Ejol L] 

Tj = - 8 ~ p B ~ , , j .  

(2 .90)  

(2 .9b )  

The balance between buoyancy and Stokes drag requires 

- 4 7 r [ ~ , ~ ~  P + E~~~ L] + +7ra3(pS - p )  gL = o (2.10a) 

while the condition of zero torque yields 

- 8 ~ p B j l l  = 0. (2 .  l o b )  
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Equations (2.10) allow 3N of the unknown constants in (2.4) to be determined, i.e. 
E,,, = 0, Eio, = 4a3(p8-p)g, Bill = 0 (j = 1,2,3,  ..., N ) .  (2.11) 

This is exactly equal to the number of unknown velocities introduced by (2.7).  
Now, if the three no-slip boundary conditions are satisfied at  M points on each of 

the N spheres and the inner two series in (2 .3)  are truncated to yield a total of 3 M  
terms, then a set of  3 x N x M simultaneous linear algebraic equations results for the 
3 x N x M unknown constants: Bjmn (m + 1 when n = l ) ,  C,,,, Ejmn (m + 0,  1 when 
n = i ) ,  q., y. and 0,. For each point on the surface of the j t h  sphere at  which the three 
no-slip boundary conditions are satisfied the following equations are obtained : 

N n 

j = l n = l  m=O 
u I ~ ~ = ~  = c c. [BjmnB;mn+CimnC~mn+EimnE;mn] = L$+aawjcos6,, (2.12a) - 

Mterms 

- -  
Mterms 

- -  
Mterms 

(2.12 c )  

Equations (2.12) form the fundamental matrix equation of the collocation technique 
for planar multiple-sphere configurations. The primed coefficients of the constants 
Bimn, C,,, and Ejmn depend only on the geometry of the flow configuration and are 

(2.13b) 

x sin 0, cos q5, cos m$, - m(n- 2 )  d P E ( & . ) s i n m $ ,  sin$ 
n sinei 
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m 
BYrnn = - - $+I P3 Cj  cos m# j (2.13 9 )  

1 
CTmn = , 4 t a ( m - n - l ) P ~ + , ( C j ) ~ o ~ m # j ,  (2.13 h) 

1 
E!" m n  = 2pn(2n - 1)  ry [2(n+ l)CjpF(Cj)+(n-2) (n-m+ 1)P2+l(Cj)Ico~m#j 

(2.13i) 

dWC.)  " 3 -  - (n+ 1 ) c j e x j ) - ( n - m +  1)PF+l(C,) (2.14) 

The system of linear equations described by (2.12) and (2.13) can be solved by any 
standard matrix reduction technique. It should be noted that, for m = 0, 

and 

dCj 1-yy 

Ill Bimn = B;,n = Bjmn = 0. 

Thus for m = 0 the Bjmn terms contribute nothing to the solution and should be re- 
placed by the terms of next higher order in the series in order to conserve an equal 
number of equations and unknown quantities. Thus the sequence in which the terms 
in (2.12) are taken for each sphere is Cjol, EjOl, Bjll, Cjll, Ejll, CjO2, EjO2, BjI2, CiI2, 

In  computing and presenting the results for the multiple-sphere problem, it is con- 
venient to non-dimensionalize the physical quantities involved by using the sphere 
radius as the basic unit of length and the terminal settling velocity U, of a single isolated 
sphere as the characteristic velocity: 

Ejm, a * * .  

u, = 2U2(P, - P )  S1W. (2.15) 

Denoting dimensionless variables with a tilde, the non-dimensional horizontal, vertical 
and angular velocities are defined as 

0, = q/q, E y/q, 6, = uwj/V, (2.16) 

and the dimensionless time as 
tl = Utt/a. (2.17) 

The hydrodynamic force exerted on the j t h  sphere in the presence of all the other 
spheres can alternatively be expressed as 

Fj = - 67rpa[q ARj f + A,, fi], (2.18) 

where AHj  and A ,  are the horizontal and vertical drag correction factors defined by 
(2.18). Comparing thisequation with ( 2 . 9 ~ ~ )  andusing (2.11), (2.15) and (2.16) one finds 
that 

A, = Ejl1/1.5,mU;. = 0 when U, + 0, ( 2 . 1 9 ~ )  

(2.19 b )  A ,  = E j o l / l ~ 5 , u u ~  = l/@. 

In  subsequent sections A ,  will be denoted simply as hi since, from (2.19a), hHj = 0. 

3. Two-sphere solutions 
In  this section the accuracy and convergence of the basic collocation technique 

described in 5 2 will be carefully examined by comparing the present results with the 
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ej=600 

e j =  120" 

(4 
FIGURE 2. Position of points for spheres falling (a) parallel to their line of centres, (6) perpendicu- 

lar to their line of centres and (c) in an arbitrary orientation. 

exact two-sphere solutions of Stimson & Jeffery (1926) and Goldman et al. (1966). Also, 
the sensitivity of the soIution to the selection of boundary points will be explored. In 
essence we wish to study the truncation properties of the matrix equation (2.12). 

When specifying the points along the boundary of each sphere where conditions 
(2.7) are to be exactly satisfied, it is necessary to choose a pattern which is symmetric 
about both the equatorial plane 0, = &r and the meridional plane $, = in-. Owing to 
the symmetry about the plane y = 0 only the flow in the region y 2 0 need be con- 
sidered. Thus the range for 0, and $, is between 0 and 71 and the points chosen should lie 
on this hemisphere. 

Trials using up to twelve boundary points on each hemisphere were made for two 
equal spheres falling perpendicular and parallel to their line of centres at  various 
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Spacing 

10 
9 
8 
7 
6 
5 
4 
3 
2 

1.8884 
1.5431 
1.3374 
1.1276 
1.0453 
1.0050 
1.0025 

1 

Exact 
solution 

0.93036 
0.92325 
0.91454 
0.90360 
0.88949 
0.87060 
0.84412 
0.80472 
0.74226 
0.73325 
0,70245 
0,68205 
0.65963 
0.65037 
0.64572 
0.64543 
0.645 14 

M = 2  

0.93045 
0.92336 
0,91469 
0.90381 
0.88978 
0.87103 
0.84477 
0.80559 
0.74200 
0.73247 
0.69854 
0,67450 
0.64623 
0.63391 
0.62758 
0.627 17  
0.62678 

M = 4  

0.93040 
0.92331 
0.91461 
0.90371 
0.88966 
0.87088 
0-84462 
0.80573 
0.74458 
0.73580 
0.70576 
0.68580 
0.66371 
0.65443 
0-64973 
0.64943 
0.64914 

M = 12 

0.93036 
0.92325 
0.91454 
0.90360 
0.88949 
0.87060 
0.844 12 
0.80470 
0.742 1 6 
0.73314 
0.70229 
0.68192 
0.65963 
0.65043 
0.64581 
0.64552 
0.64524 

TABLE 1 .  Comparison of the solutions for the drag correction factor A, obtained by the collocation 
technique with the exact solution for two equal spheres falling parallel to their line of centres. 

spacings. The sphere spacing d,, is defined as the centre-to-centre distance between 
two equal spheres measured in sphere diameters. The only solutions found to give 
meaningful results were the M = 2 , 4  and 12 solutions. Intermediate values of M were 
unsuccessful owing to one or a combination of the following reasons: 

(a )  Locating points at  13, = 0, in, rr or $, = 0,  Qn, 7~ in many cases produces a 
singular matrix, so that the symmetry requirements outlined in the previous para- 
graph cannot be met for odd values of M .  

( b )  The system of equations (2.12) produces an ill-conditioned matrix, i.e. a near- 
zero determinant, for certain configurations of points. 

(c) The series (2.12) cannot be arbitrarily truncated at  any point. Apparently, when 
certain terms are retained in the series, they require the presence of other terms for the 
series to converge uniformly. Thus, in contrast to axisymmetric flow, where boundary 
points could simply be added in symmetric pairs, the truncation of the matrix equation 
(2.12) following the particular ordered sequence described in 0 2, and consequently the 
number of boundary points taken on each sphere, proceeds in jumps. 

Figure 2 (a)  shows the positions of the points used for two equal spheres falling paral- 
lel to their line of centres. In  this case, the flow is axisymmetric and the solution is 
independent of the $, co-ordinate of the points. However, no point should be located 
at 4, = 0, i r o r  ?T since this produces a singular matrix. The results for the drag correc- 
tion factor a t  various spacings are compared with the exact values in table 1. Rapid 
convergence to the exact solution is obtained as the number of points is increased. The 
maximum error, for the case of touching spheres with only two boundary points on each 
sphere is only 2.8 yo. This is in sharp contrast to the method of reflexions, which gives 
an error of 26 yo at this spacing. 

Figure 2 ( b )  shows the positions of the points used for two equal spheres falling per- 
pendicular to their line of centres. The two-point solution shown was found to be 
independent of the 0, co-ordinate of the points. The results for the vertical drag correc- 
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Spacing 

10 
9 
8 
7 
6 
5 
4 
3 
2 

1.8884 
1.5431 
1.3374 
1.1276 
1.0453 
1.0050 
1.0025 

1 

10 
9 
8 
7 
6 
5 
4 
3 
2 

1.8884 
1.5431 
1.3374 
1.1276 
1.0453 
1.0050 
1.0025 

1 

Vertical drag correction factor, A, 
Exact 

solution M = 2  M = 4  

0.96380 0.96384 0.96380 
0.95992 0.95998 0.95992 
0-95511 0.95520 0.95511 
0.94899 0.9491 1 0.94899 
0.94092 0.94111 0.94092 
0.92981 0.93013 0.92981 
0-91348 0.9 14 10 0.91349 
0.8 8 709 0.88850 0.887 11 
0.83680 0.84113 0.83694 
0.8281 9 0.83324 0.82836 
0.79454 0.80301 0.79490 
0.76751 0.77934 0.76804 
0.7 32 7 1 0.74887 0.73288 
0.71771 0,73470 0.7 1648 
0.71255 0.72721 0.70786 
0.7 1292 0.72673 0.70730 
0.72469 0.72626 0.70676 

0.0018750 
0.0023149 
0.0029297 
0.0038265 
0*0052082 
0.0074997 
0.01 1717 
0.020824 
0.046696 
0.052304 
0.077498 
0.101 01 
0.13 141 
0.13664 
0.11576 
0.10825 

0 

Angular velocity, 9, 
0.0018633 
0.0022970 
0.0029013 
0*0037781 
0.0051190 
0.0073157 
0.011273 
0.019452 
0.040249 
0.044336 
0.061 181 
0.075186 
0.093124 
0~10101 
0.10495 
0.10520 
0.10545 

0.0018759 
0.0023161 
0.00293 1 8 
0.0038300 
0.0052146 
0.0075120 
0.01 1744 
0.020886 
0.046735 
0,052288 
0.076940 
0.099645 
0.13120 
0,14534 
0.15220 
0.15262 
0- 15303 

M = 12 

0.96380 
0.95992 
0-95511 
0.94899 
0.94092 
0.92980 
0.91347 
0.88708 
0.83677 
0.82816 
0.79445 
0.76739 
0.73282 
0.71917 
0.7 1523 
0.71513 
0.71507 

0.0018760 
0.0023 148 
0.0029297 
0.0038265 
0.0052081 
0.0074994 
0.01 1716 
0.020818 
0 * 0 4 6 6 6 0 
0.052262 
0,077470 
0.10116 
0.13 150 
0.13119 
0.11019 
0.10778 
0.10531 

TABLE 2. Comparison of the solutions obtained by the collocation technique with the exact 
solution for two equal spheres fa.lling freely side by side a t  various spacings. 

tion factor and the angular velocity at various spacings are compared with the exact 
values in table 2. Examination of table 2 shows general convergence to the exact 
solution as the number of boundary points is increased, except for a small deviation for 
the angular velocity predicted by the four-point solution at  very close spacings. This 
deviation for close spacings is not surprising since, as observed in Leichtberg, Wein- 
baum, Pfeffer & Gluckman (1976), one needs more boundary points in the vicinity of 
contact if one is adequately to  satisfy the no-slip boundary conditions in the near- 
collision limit. It is interesting in this regard that the error in the twelve-point solution 
for both hj and Qj is only about 0.4% when the gap between the spheres is 0.0025 
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+ 
FIGURE 3. Two equal spheres settling in an arbitrary orientation under gravity. 

diameters. However, the solution fails to predict zero angular velocity when the 
spheres touch. 

Equally accurate quasi-steady solutions for a straight chain of two or more spheres 
a t  any orientation /3 (see figure 3) may be obtained using formulae (4.1)-(4.3) in the 
next section, which are based on the highly accurate truncation solutions for BLi, A,, 
and Alj. These formulae can obviously not be applied to the arbitrary planar motion of 
three or more spheres when the sphere configuration is continuously changing owing to 
particle interactions. For this purpose we examine next the truncation of (2.12) 
assuming that (4.1)-(4.3) cannot be used. 

The solutions shown in tables 1 and 2 for the vertical and horizontal two-sphere 
configurations exhibit both rapid convergence properties as the number of boundary 
points is increased from 2 to 4 to 12 and insensitivity to small changes in the location 
of the boundary points shown in figures 2 (a )  and (b). Unfortunately, this behaviour 
does not extend to the settling of two spheres a t  an arbitrary orientation p if (4.1)- 
(4.3) are not used. The difficulty is not the selection of boundary points for a given flow 
orientation (the selection of boundary points is not a sensitive function of sphere 
spacing for a given orientation except for small gap widths) but the fact that for each 
angle pa different set of boundary points should be used. This feature of the collocation 
technique is its most important shortcoming. 

To overcome this difficulty, the angle ,8 may be divided into several different ranges 
between 0 and &r, and a different set of boundary points used in each range to keep the 
error in the horizontal drift and angular velocities within acceptable limits. However, 
satisfactory results may be obtained more conveniently by finding a single optimum 
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FIQURES 4(a, b ) .  For legend see next page. 

configuration of points which can be used for all orientations. To this end more than 
6000 solutions were tested by varying the configuration of points and the orientation 
angle p. These tests showed that, while a given configuration of points produced good 
results over a certain range of p, the same set of points could produce substantial 
errors outside this range. The four-point solution found to give the smallest maximum 
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FIGURE 4. Percentage error in (a) vertical drag correction factor, ( b )  horizontal drift velocity and 
(c) angular velocity of two equal spheres aa a function of orientation at  various spacings. 

percentage error a t  any orientation is shown in figure 2 (c). The percentage error in the 
drag, angular velocity and horizontal drift velocity for this positioning of the points is 
presented as a function of orientation for various spacings d,, in figure 4. The maximum 
error in the vertical drag correction factor occurs in the central range of the orientation 
angle for all spacings. For spacings of about 1.3 or greater, the maximum error in the 
horizontal drift velocity and angular velocity occurs when the line of centres is nearly 
horizontal or vertical. At closer spacings the maximum error in angular velocity and 
horizontal drift velocity occurs a t  orientations of roughly 20' and 45' respectively. 
Even though the percentage errors in the drift and angular velocities seem large for 
close spacings, it should be kept in mind that the magnitude of these quantities is small 
and, therefore, their actual deviation is small. The maximum values for the drift and 
angular velocities at any spacing or orientation are less than 6 and 10 yo respectively 
of the vertical velocity component (Goldman et al. 1966). Nevertheless concern about 
the cumulative effect of small errors for long-time interactions was one of the reasons 
for performing the experiments presented in $ 5. 

The four-point solutions shown in figure 4 can be substantially improved over most 
of the range of /3 by going to twelve-point solutions. This increases the number of 
matrix equations to be solved for each sphere from 12 to 36. Thus for time-dependent 
multisphere interactions involving a thousand or more quasi-steady solutions this 
improvement is not practical and, as seen at  the end of $ 5 ,  comparison with experiment 
shows that such improvement is unwarranted. However, for the single, bounded, non- 
axisymmetric sphere calculations described in § 6 such improvement would certainly 
be desired. 

A natural question to ask a t  this point is how accurately the collocation technique 
can predict the local fluid velocity. Tables 3 shows values of the local fluid velocity 
vf relative to the sphere settling velocity v for two spheres settling axisymmetrically 
a t  a centre-to-centre spacing of three diameters. This configuration was chosen since 
the exact local velocity field can easily be computed from the Stimson & Jeffery 
solution. The M = 4 and 12 collocation solutions correspond to those shown in figure 
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Radial 
distance 
R (radii) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.5 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

Axial 
djstance 
2 (radii) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0-6 
0.7 
0.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1-4 
1-5 
1.6 
1.7 
1.8 
1.9 
2.0 
4.0 
4.1 
4-2 
4.3 

(a) On midplane (Z = 0) 

%f- f? 
(exact @f- i7 
solution) (M = 4) 

0.30190 
0.30281 
0.30553 
0.31002 
0.31624 
0-32409 
0.33350 
0.34434 
0.35650 
0.36985 
0.38425 
0.467 12 
0.55677 
0.7 1744 
0.83512 
0.91648 
0.97328 
1.01418 
1.04466 
1.06809 
1.08661 

0.29854 
0.29946 
0-30222 
0.30677 
0.31306 
0.321 00 
0.33051 
0.34147 
0.35375 
0.36723 
0.38175 
0.46519 
0.55519 
0.71604 
0.83368 
0.9 1498 
0.97175 
1-01264 
1 a043 10 
1.06858 
1.08505 

(b)  Along axis (2 = 0) 

@f- W 
(exact @,- @ 

solution) (M = 4) 

0.30190 
0.30110 
0.2987 1 
0.29470 
0.28906 
0.28173 
0.27269 
0.26186 
0,24920 
0.23464 
0.21813 
0.19960 
0.17906 
0.15653 
0.13216 
0.10824 
0.07937 
0.05261 
0.02785 
0.00839 
0 
0 
0.01359 
0.04443 

0.29854 
0.29773 
0.29530 
0.29123 
0.28549 
9-27804 
0.26884 
0.25781 
0.24490 
0.23004 
0.2 13 15 
0.19418 
0.17309 
0- 1499 1 
0.12474 
0.097 88 
0.06990 
0.04190 
0.01587 

- 0.00455 
- 0.01269 
- 0.01614 
- 0.00105 

0.03147 

f i r -  T7 
(M = 12) 

0.30195 
0-30286 
0-30558 
0.31007 
0.31628 
0.32414 
0.33354 
0.34439 
0.35655 
0.36989 
0.38429 
0-46717 
0.65681 
0.71747 
0-83516 
0.9 1651 
0.97331 
1.01422 
1.04469 
1.06813 
1.08664 

IT,- W 
(M = 12) 

0.30195 
0.30115 
0.29876 
0.29475 
0.28910 
0.28178 
0.2 72 73 
0.26190 
0.24924 
0.23468 
0.2 1815 
0.19962 
0.17907 
0.15653 
0.132 13 
0.10618 
0.07926 
0.05244 
0.02760 
0*00806 

- 0.00038 
- 0.00032 

0.0 1333 
0.04424 

0.08317 0.07178 0-08303 
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Axial *,- i7 
distance (exact iFf.-G G f S  
Z (radii) solution) ( M  = 4) ( M  = 12) 

4.4 0.12486 0.11485 0.12477 
4.5 0.16689 0.15805 0.16683 
4.6 0.20786 0.20001 0,20783 
4.7 0.24707 0.24005 0.24706 
4.8 0-28422 0.27790 0.28422 
4-9 0.31920 0.31347 0.31922 
5-0 0.35204 0.34680 0,35206 
6.0 0.58720 0.58436 0.58724 
'7.0 0-72 150 0.71934 0.72154 
8.0 0-80790 0.80601 0.80794 
9.0 0.86842 0.86666 0.86846 

10.0 0.91338 0.92169 0.91342 

TABLE 3. Comparison between exact Stimson & Jeffery solution and collocation solutions for the 
local fluid velocity relative to the sphere settling velocity at a spacing of 3 diameters. 

Radial 
dJstance 
R (radii) 

0 
0. 1 
0.2 
0.3 
0.4 
0.6 
0.6 
0.7 
0.8 
0.9 
1.0 
1.5 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

%,- i7 
(exact 

solution) 

0.01255 
0.01456 
0,02066 
0.03093 
0.04549 
0.06437 
0.08751 
0.11468 
0.14550 
0.17945 
0.2 1592 
0-41376 
0.59564 
0.84764 
0-99070 
1.07697 
1.13339 
1-17286 
1.20194 
1.22425 
1.24189 

%,- $7 
(boundary 

points placed 
as in 

figure 2 4  

0.0 1203 
0.01 4 10 
0.02034 
0.03082 
0.04561 
0.06471 
0.08802 
0.1 1532 
0.14620 
0.18016 
0.21659 
0.41415 
0.59589 
0.84788 
0.99097 
1.07725 
1.13367 
1.17314 
1.20222 
1.22452 
1.24217 

9,- $7 
(boundary 

points placed 
near point 
of interest) 

0.01288 
0.01486 
0.02085 
0.03093 
0.0452 1 
0.06375 
0.08647 
0.11318 
0.14352 
0.17699 
0.21302 
0.40950 
0.59112 
0.84333 
0.98653 
1.07284 
1.12928 
1.16875 
1.19784 
1.22014 
1.23778 
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Axial 
distance 
I (radii) 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.62 
0.64 
0-66 
0.67 
0.68 
0.69 
0.7 
2.7 
2.71 
2.72 
2.73 
2.74 
2-76 
2-78 
2.8 
2.9 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

- 
(b)  Along mi.9 ( R  = 0) 

gf-- 6? 
(exact 

solution) 

0.01255 
0.01181 
0-00974 
0.00673 
0.00345 
0.000818 

- 0-000260 
- 0.000262 
- 0*0002 11 
- 0*000127 
- 0.000082 
- 0.00004 1 
- 0~000012 

0 
0 
0.000188 
0400736 
0.00162 
0.00281 
0-00605 
0.01029 
0.01541 
0.05035 
0.09420 
0-49626 
0.71865 
0.85 104 
0.93882 
1.00 150 
1.04864 
1.08545 

gj- iF 
(boundary 

points placed 
aain 

figure 2 4  

0.01203 
0.01124 
0-00898 
0.00563 
0.00184 

- 0.00148 
- 0.00336 
- 0*00351 
- 0.00358 
- 0.00359 
- 0.00357 
- 0.00356 
- 0.00353 
- 0.00350 
- 0.00272 
- 0.00251 
- 0.00194 
- 0.00102 

0*00022 
0.00355 
0.00790 
0.01 3 13 
0-04866 
0.09302 
0.49650 
0.71895 
0.85134 
0.93911 
1-00179 
1.04892 
1.08573 

Fj- i?; 
(boundary 

points placed 
near point 
of interest) 

0.01288 
0.0121 6 
0.01 0 14 
0.00717 
0.00391 
0.0012 1 

- 0.000069 
- 0.000 123 
- 0.000122 
- 0.000083 
- 0.000057 
- 0.000032 
- 0~000012 

0~00000 
0-00000 
0.0001 87 
0.000736 
0.00162 
0.00282 
0.00606 
0*01030 
0-01541 
0.05024 
0.09388 
0.49359 
0-7 1515 
0.84724 
0.93489 
0.99751 
1.04461 
1.08 140 

TABLE 4. Comparison between exact Stimson BE Jeffery solution and twelve-point collocation 
solutions for the local fluid velocity relative to the sphere settling velocity at a spacing of 1.7 
diameters. 

2 (a). Examination of table 3 shows that the relative velocities predicted by the colloca- 
tion solutions are consistently accurate to within about 1 yo for M = 4 and 0.01 yo for 
M = 12 except immediately adjacent to the spheres. The accuracy of the M = 12 
solution near the sphere axis is very good in light of the fact that there are no boundary 
points in that vicinity. 

Another point of interest is to determine whether the collocation technique is cap- 
able of predicting fine features of the flow such as the presence of separated regions of 
closed streamlines. Davis et al. (1976) have used the Stimson & Jeffery solution to show 
that, for steady, axisymmetric, uniform flow past two equal spheres, separation of the 
flow from the spheres occurs for centre-to-centre spacings of less than 1-79 diameters. 
As the spacing is further decreased, the two separated flow regions adjacent to each 
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FIGURE 5. Drag correction factor for vertical sphere chains at a spacing d,, = 2. 

sphere coalesce and the region between the two spheres rotates in one or more ring 
vortices. To see whether the collocation technique can predict this behaviour, values of 
the relative local fluid velocity were obtained for two spheres settling under gravity 
at  a spacing of 1.7 diameters for the plane midway between the two spheres (g = 0 )  and 
along the axis (tables 4 (a, b )  respectively). Results are shown for two sets of twelve- 
point collocations: one as in figure 2 (a)  and one in which two sets of boundary points 
were placed near the axis, i.e. at 8, = lo and 179' for three arbitrary values of 4, with 
the remaining six points placed at 6, = 45" and 135" in a scheme similar to that used by 
Leichtberg, Weinbaum, Pfeffer & Gluckman (1976) to improve the accuracy of the 
solution in the near-collision limit. Table 4 (a) shows that both collocation schemes are 
in good agreement with the exact solution with a maximum local error of about 1 yo. 
Table 4 (b)  shows that both collocation schemes predict the presence of the separated 
flow region in accord with the exact solution. However, the extremely small relative 
velocities adjacent to the sphere are obscured by the relatively larger slip velocity 
incurred by using the collocation in figure 2 (a). A substantial improvement is observed 
as the slip velocity is eliminated in this vicinity by placing boundary points near the 
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FIGURE 6. (a) Vertical drag correction factors and ( b )  angular velocities for horizontal sphere 
chains at a spacing d,, = 2. 
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FIGURE 7. (a) Vertical drag correction factors and ( b )  angular velocities for a seven-sphere 
horizontal chain at different sphere spacings. 

axis = 0. This modification also produces a considerable improvement in the solu- 
tion in the vicinity of the other side of the sphere (i.e. for 2 > 2.7). The 12-point collo- 
cations also exhibited the various vortex patterns described by Davis et al. (1976) at  
closer spacings. 

4. Multiple-sphere configurations 
The solutions for the vertical and horizontal two-sphere configurations shown in 

figures 2 (a) ,  (b )  are readily extended to vertical and horizontal arrays of any number of 
equally spaced spheres, the only limitation being the size of the matrix (2.12) that the 
computer can handle. Although these flow configurations are transitory, they do shed 
important light on the order of magnitude of particle interactions in larger chains, 
particle shielding effects and the effect of relative spacing and orientation. The results 
are also the first presented for the angular velocity of three or more closely spaced 
spheres. 

Figure 5 shows the drag correction factor A,,, for straight chains containing 3,5,7,9, 
1 1, 13 and 15 equally spaced spheres falling parallel to their line of centres at  a spacing 
of 2 diameters. The central sphere is denoted by j = 0. Results are shown for only half 
of the chains since values for the other half are symmetric about j = 0. Solid lines 
connect solutions through individual spheres in a chain, which are represented by 
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FIGURE 8. Critical spacing for triangular three-sphere configuration. 

the points shown. The dashed lines connect spheres of the same number taken from 
the outermost sphere. The error in for these four-point solutions is believed to be 
about 0.3 yo on the basis of the results in table 1 and a comparison with the axisym- 
metric collocation theory of Leichtberg, Weinbaum, Pfeffer & Gluckman (1976). 

Figures 6(a) and ( b )  show the vertical drag correction factor A,, and the angular 
velocity a,, for the same chains falling perpendicular to their line of centres. The 
meaning of the dashed and solid lines is the same as in figure 5. The estimated error for 
the four-point configuration used is about 0.02 % for the vertical drag correction 
factors and 0.09 yo for the angular velocities; see table 2. The three-, five- and seven- 
sphere chains were also run using the twelve-point collocation (figure 2 b)  and confirm 
this estimated accuracy of the four-point solution. 

Comparison of figures 5 and 6 (a) shows that the relative difference between A,,, and 
A,, grows progressively larger as the chain length is increased. One might conjecture 
that the ratio o f h ,  to A,, approaches the value 2 in accord with slender-body theory as 
the chain length becomes infinite. A marked reduction in drag per sphere as the size of 

4-2 
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the chain is increased is clearly evident in these figures. (The fifteen-sphere vertical 
chain falls roughly three times as fast as an isolated sphere.) Examination of figure 6 (b)  
shows how the angular velocity increases as one moves to the outer spheres in a horizon- 
tal chain and that for larger chains, as shown by the dashed lines, this variation in 
angular velocity is very small. Spheres to the left of j = 0 rotate clockwise, while 
spheres to the right rotate counterclockwise. The computation times required to deter- 
mine the drag and velocity field varied from about 0.75 s for a three-sphere chain to 
about 30 s for the fifteen-sphere chain using an IBM 3701168 computer. 

Figures 7 (a) and (b )  examine the effect of sphere spacing and end effects for a seven- 
sphere horizontal chain. Related results are presented in Gluckman et al. (1971) for 
vertical chains. These solutions, obtained with the twelve-point configurations shown 
in figure 2 (b ) ,  have a maximum probable error for A, of about 0.4 yo at d,, = 1.0025. 
The error in the angular velocities is about 5 % a t  d,, = 1.0025 and about 0.08 % at 
d,, = 2. A chain of seven nearly touching spheres falls more than twice as fast as an 
isolated sphere, with the central sphere moving about 20 % faster than the outermost 
one. Figure 7 ( b )  shows that the angular velocity of each sphere in the horizontal chain 
increases rapidly as the spacing is decreased until a maximum angular velocity is 
achieved for very small gaps in the lubrication-theory limit. This maximum is observed 
to occur at a spacing of about 1.05 diameters for two spheres (see table 2) and decreases 
as more spheres are added to the chain, 

The solution for a straight chain of spheres falling in any arbitrary orientation /3 may 
be obtained by combining the solutions for a vertical chain and a horizontal chain with 
the same spacing as was done for the case of two spheres by Goldman et at. (1966). If the 
acute angle between the line of centres and the horizontal is p (see figure 3) the horizon- 
tal drift, angular velocity and vertical drag correction factor are given by 

As mentioned previously, these formulae based on uL,, A,, and are considerably 
more accurate than the more general four-point solutions shown in figures 4(a), ( b )  
and (c). 

I n  Ganatos (1977) a variety of specialized but intriguing quasi-steady three- and 
four-sphere configurations are studied. One which is relevant to the time-dependent 
solutions described in the next section is the three-sphere configuration sketched in 
figure 8. The question asked is whether there is a critical value of D/B for which all 
three spheres will fall with the same vertical velocity assuming that sphere 2 is on the 
centre-line between spheres 1 and 3. The locus of such solutions is shown by the curve 
in figure 8. The interested reader is referred to the above reference for a more thorough 
discussion of this and other specialized flow geometries. 

5. Time-dependent settling of three spheres in a vertical plane 
In  general, a cluster of three or more spheres falling asymmetrically in a vertical 

plane cannot achieve a stable steady-state configuration even after the initial quasi- 
steady settling velocity is achieved, since the quasi-steady Stokes drag on each sphere 
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continues to vary because of multiparticle interaction effects that continually change 
as a function of particle spacing and velocity. As a result, the solutions presented in the 
previous section are valid for those particular configurations which exist at  one instant 
of time except for certain special cases discussed in Ganatos (1977) where the velocity 
of all the particles is the same and the configuration does not change. 

Unsteady multiparticle creeping motions are complicated by the appearance of 
Basset, virtual-mass and acceleration forces and by the difficulty of calculating fluid- 
particle interactions for three or more closely spaced particles. Leichtberg, Weinbaum, 
Pfeffer & Gluckman (1976) have presented a theoretical and experimental investiga- 
tion exploring the importance of each of these complicating features by examining in 
detail the hydrodynamic interaction between three or more spheres falling under 
gravity along a common axis parallel to their line of centres. The results of this investi- 
gation indicated, in general, that the Basset force is the most important unsteady force 
in gravitational flow at low Reynolds numbers in which the flow configuration is 
slowly changing owing to fluid-particle interactions. Virtual mass and particle 
acceleration, on the other hand, were shown to be of negligible importance except for a 
short-lived initial transient period. Nevertheless, even with the complete omission of 
the unsteady forces, the qualitative behaviour of the problem was preserved and 
agreement between theory and experiment was reasonable, especially for runs of short 
duration in which Re < 0.1. 

Although a complete theoretical analysis of the settling of clusters of spheres should 
include all the unsteady forces present, the computations required for including these 
forces for non-axisymmetric flow are prohibitively time-consuming on present com- 
puters. If the unsteady forces are omitted (i.e. a t  each instant of time it is assumed 
that the quasi-steady Stokes drag balances the gravitational buoyant forces on each 
sphere), the numerical integration procedure used to determine the trajectory and 
rotation of each sphere for a typical run requires that the system of equations given by 
(2.12) and (2.13) be solved between 1000 and 3000 times for runs of the order of 1000 
sphere diameters. To accomplish this for a three-sphere run in which the no-slip 
boundary conditions are satisfied a t  four points on the surface of each sphere requires 
between 10 and 30 min of IBM 3701168 accounting time. 

The numerical integration procedure used in this study is basically the same as that 
used by Leichtberg, Weinbaum, Pfeffer & Gluckman (1976). With the omission of the 
unsteady forces, the spheres may not be started from rest. Instead, the initial velocities 
are the quasi-steady velocities obtained from (2.12) and (2.13) for the initial con- 
figuration. The trajectory of each sphere in a vertical planar cluster of spheres is deter- 
mined by integrating 

dSildf = <., (5.1) 

where Sj = 6j f +di k is the instantaneous distance of the centre of thejth sphere from 
the origin of a rectangular co-ordinate system which is a t  rest and < = uj f + k is 
the translational velocity of that sphere. Its angle of rotation aj is obtained by inte- 
grating 

dai/df  = Oi, (5.2) 

where ai is measured in radians and is positive in the counter-clockwise direction. The 
numerical integration is carried out as follows. If lo is an arbitrary time and Af is a 
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finite but small time interval, the position and velocity of the j t h  sphere at  time 
to + At may be obtained in terms of the solution a t  to by a Taylor expansion about To:  

Sj(& + AT) = S j ( t 0 )  + &,(to) AT+ + E j ( t 0 )  (A%)’ + &(f0) (A%)3 + . . . 
= i5j(fo)+~(To)AT++&o) ( A % ) z + & t o )  (AT)3+ ..., (5.3) 

(5.4) 

Solving (5.4) for e(t0), substituting into (5.3) ind  neglecting terms of higher order 
than (AI?)~ yields 

where 

is a correction used solely to estimate the error incurred by neglecting terms of order 
higher than (AT)2. A similar equation may be obtained for the angle of rotation 

where 

<(To+A%) = < ( T o ) + ~ ( T o ) A % + & ~ ( t o )  (AT)2+gq(To) (At)3+ .... 

Sj(T0 + Af) = i5j(&) + &[9:.(f0) +<,(to + A%)] A% + %(To), (5-5) 

~ ~ ( 8 , )  = -&?(to) (A%)3 (5.6) 

aj(To+At) = a j ( t 0 )  +&[~j(to)+ij,(%O+At)]At+~,(to), (5.7) 

#o) = -@,(to) (5.8) 
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The velocities <.(to + At) and Oi(f,, + At) are computed simultaneously by an iterative 
procedure which alternately solves for the positions and angles from ( 5 . 5 )  and (5.7) 
and for the translational and angular velocities from (2.12) and (2.13) using the colloca- 
tion technique until convergence is achieved. Usually, only two iterations at  each time 
step are required. Following convergence of the iteration procedure, the error for the 
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c= 2.0 

FIGURE 9. Horizontal chains of three unequally spaced spheres settling freely under gravity 
( A  + B = 6 diameters). 
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displacement and rotation is estimated from (5.6) and (5.8) written in finite-difference 
form. If any of these errors exceed preset error limits, the time interval is halved and 
the computations repeated. If, on the other hand, none of these errors exceeds 10 yo 
of the preset error limits, the time interval At is doubled before proceeding with the 
computations for the next time step. By doing this, computer time is kept to a mini- 
mum while the desired accuracy is maintained. All the numerical solutions to be 
presented in this section are based on the four-point collocation of (2.12) (figure 2c). 

The simplest unsteady non-axisymmetric motion of a finite number of particles is 
that of three equal spheres settling freely in a vertical plane. Figure 9 shows a series of 
three-sphere numerical runs relative to a stationary reference frame in which the 
spheres begin from a horizontal-chain configuration. In  all cases, the initial centre-to- 
centre distance between the two outer spheres is six diameters while the ratio 

centre-to-centre distance from 
central to right outer sphere B C E  - 
centre-to-centre distance from A 
central to left outer sphere 

- _  (5.9) 

is varied from 1.0 to 2.0 in increments of 0.1. These conditions were chosen since they 
correspond to the experimental studies of Jayaweera et al. (1964). Each figure is drawn 
to scale and the arrows indicate the instantaneous direction of the angularvelocity of 
each sphere. The numbers to the left of each configuration indicate the total elapsed 
time f and the distance dj fallen by the uppermost sphere measured in sphere radii. 

Kynch ( 1  959) discusses a special arrangement of three spheres in a vertical plane in 
which one sphere is midway between and above the other two, whose line of centres is 
horizontal. If the particles are equal, the two outer ones separate to allow the central 
sphere to pass between them and then close up behind it. Because of the reversibility of 
Stokes flow, the trajectory of the particles after they have formed a horizontal chain is a 
mirror image of the trajectory before. Thus it is necessary to consider only the motion 
of the spheres when they are released in a horizontal chain, i.e. C = 1 (figure 9a) .  As 
shown in figure 9 (a) ,  the central sphere initially falls faster as the two outer spheres 
approach one another. A point is reached (t = 107.8) where the three spheres fall with 
the same vertical speed; see figure 8. However, because of the non-vanishing horizontal 
drift, the outer spheres continue moving closer together. The outer spheres now form a 
doublet and begin falling faster than the central sphere. When the gap between the 
outer spheres reaches 0.1 diameter (t = 158.3) the four-point collocation breaks down. 
However, qualitative results may be obtained beyond this point by artificially con- 
straining the spheres from moving closer or rotating while allowing them to move apart 
and resume rotation when this is indicated. This extended solution shows that there is 
no tendency for the doublet formed by the outer spheres to separate, and the vertical 
distance between the doublet and the central sphere closes until a spacing is reached 
where all three spheres fall with equal velocity, creating a steady configuration. The 
run was discontinued after the ratio (see figure 8)  was within 0.01 yo of the critical 
value. It should be noted that the critical value of for B = 1 .1  shown in figure 9 (a)  
at t = 277.0 is 3.567. This differs from the critical value of DlB = 2.715 given by figure 
8, since in the former case the two spheres forming the doublet have been artificially 
constrained from rotating or moving closer to each other. 

A check on the overall accuracy of the numerical integration procedure may be 
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C = B/A 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 > 2.0 

Hocking (1964) 

Jayaweera et al. 

1 3  

(1964) (experimental) 1 2 2 1 3 2 2 2 2 2 3 

(theoretical) 1 1 - -  2 - - - -  

Present study 1 1  2 ? 1 $ 3  2 2 t 2 3 3 

t Inconclusive. $ A + B = 10 diameters. 

TABLE 5. Sphere left behind for a horizontal chain of three unequally spaced spheres settling 
under gravity ( A  + B = 6 diameters). 

made by running the three-sphere problem described in the previous paragraph in its 
entirety, i.e. beginning with B = 1.101 for a horizontal doublet and placing a third 
sphere midway between and above the other two with D = 4.787, which is the mirror 
image of the configuration shown in figure 9 (a)  ( f  = 158.3). Under these conditions the 
central sphere falls slower than the doublet. However, the leading pair spreads apart, 
allowing the central sphere to catch up such that the three spheres form a horizontal 
chain. If the run is carried out for a time period equal to twice the time required for the 
three spheres to form a horizontal chain, the final configuration should be a mirror 
image of the initial configuration. It was found that the total accumulated error for 
8 and D at the end of the run was 0.08 % and 0.13 % of the initial values respectively, 
while the error in the angle of rotation of the outer spheres was - 0.05 %, of twice the 
value when the spheres formed a horizontal chain. 

Hocking (1964) has presented qualitative results similar to those shown in figures 
9 (b-i) using a single-reflexion weak-interaction theory in which the rotation of the 
spheres is neglected in an attempt to explain the qualitative experimental observations 
of Jayaweera et al. (1964) for several of the flow configurations shown in figure 9. In the 
experiments it was concluded that, for all values of C tested, one sphere in the cluster 
eventually remains behind the other two. These results as well as those of the present 
study are presented in table 5.t In  general the agreement between the present theory 
and experiment is very good, especially considering the duration of some of the runs. 
Differences occur only for marginal values of C. The present study also shows that 
there are at least two narrow bands in the range of C, near C = 1.3 and 1.8, for which the 
final configuration obtained from the numerical integration procedure indicates that 
the two leading spheres are very slowly spreading apart, which may eventually allow 
the trailing sphere to catch up after a long time period. These cases are labelled incon- 
clusive in table 5 .  A run was made for C = 1.33 and clearly showed that sphere 2 was 
left behind. The run for C = 1.4 was discontinued after spheres 2 and 3 reached a gap 
of less than 0.1 diameter. The result shown for C = 1.4 in table 5 is for A + B = 10 
diameters. 

While the qualitative agreement with experimental observation shown in table 5 is 
very encouraging, a quantitative comparison between the theoretical results and 
experimental measurements, especially of the small horizontal drift velocity, would 
be very reassuring owing to the uncertainty in the accuracy of the four-point colloca- 

t Jayaweera et al. (1964) present their results in terms of ranges of values of C .  It is not known 
whether their experiments were carried out for the specific values indicated in table 6.  
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FIGURE 10. Cozparison between theory and experiment for (a) the dimensionless horizontal 
sphere spacing B and ( b )  the dimensionless vertical sphere spacing B.  Experimental, Re = 0.01 1 : 
0, run 1; 0, run 2 ;  A, run 3; __ , numerical solution; ---, gap of doublet artificially con- 
strained from becoming smaller than 0.1 sphere diameter in numerical solution. 

tion solutions for this velocity component as discussed in relation to figure 4 ( b ) .  Thus, 
as part of a larger experimental study of multiparticle Stokes flow interactions in our 
laboratory, Randall Wu and Zeev Dagan have conducted a series of careful measure- 
ments corresponding to the initial configuration depicted in figure 9 (a).  The experi- 
m.ental apparatus and the spheres used as well as the measurement technique are 
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described in Leichtberg, Weinbaum, Pfeffer & Gluckman (1976, pp. 600-601). Un- 
fortunately, these commercially made nylon spheres had tiny internal bubbles with 
sufficient eccentricity to preclude accurate measurements of the small hydrodynami- 
cally generated angular velocities. After many trials three spheres with virtually 
identical quasi-steady settling velocities were obtained. 

Figure 10 compares theory and experiment for the time-dependent variation of the 
relative horizontal and vertical spacings B and fi as sketched in figure 8. Two sets of 
theoretical curves are shown, one in which the spheres are free to rotate and one in 
which the spheres are artificially constrained from rotating. The latter corresponds 
to the self-stabilizing configuration achieved in an internally eccentric sphere when the 
centre of gravity of the sphere lies below its centre of buoyancy. These two situations 
bracket the experimental conditions. The small differences in angular velocity in- 
volved are observed to have a small effect on the vertical spacing fi, which grows with 
time, and an almost negligible effect on the horizontal spacing B. Optical distortion 
resulting from the curved walls of the settling tank introduces a measurement error of 
about 0.2 sphere diameters. The agreement between theory and experiment is good for 
both the horizontal and vertical spacing for the entire duration of the experimental 
runs. The time scale shown is the same as that used in figure 9, the measured runs 
corresponding to roughly the first 6 frames of figure 9(a ) .  The length of the run, 
approximately 150 sphere diameters, was limited by the size of the apparatus and the 
spheres used. As noted in figure 10(b), there was a tendency for the vertical-spacing 
measurements to lag the theoretically predicted curves at  the larger times in the 
experiments. This behaviour might be attributed to the omission of the Basset force 
in the numerical solution. In  Leichtberg, Weinbaum, Pfeffer & Gluckman (1976) it is 
shown that these forces can cause discrepancies in vertical spacing which grow as 
a Ref (Re = 0.01 1 for the experiments shown) with increasing time. This effect would 
be much smaller for the horizontal drift because of the much smaller velocities and 
accelerations involved. 

6. Some comments on the extension of the present technique to bounded 
flows 

The multiple-sphere collocation technique described herein can be extended to a 
variety of bounded flow problems with both periodic and arbitrary particle spacing 
and planar symmetry using procedures very similar to those already developed in 
Wang & Skalak (1969) and Leichtberg, Pfeffer & Weinbaum (1976) respectively for 
axisymmetric flow. In  either case one first transforms the boundary-value problem for 
the collocation technique to a form that is entirely equivalent to that already treated 
in the present study for planar multiple-sphere configurations, This procedure is 
briefly outlined below. 

In  place of (2.3), the fundamental equation for the velocity field for a system of N 
spheres lying in a plane of symmetry, with an arbitrary symmetric upstream flow and 
planar or cylindrical boundaries, is given by the linear superposition 

j-1 n=l 

1 (n - 2)  r%VG+,)+pn(2n-  (n+ 1) I)rjP-(n+l) 9 (6.1) 
* [  

M 

j=1 
V = Vco + C V w j  + C C V x (rj ~ - ( n + l ) )  + V@-(n+l) 

- 
2pn(2n- 1) 
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where in view of the planar symmetry [see (2.4) and (2.5)] 
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{ ~ ~ ~ ~ ~ : j  X-(n+l)  = rn;, C PE(Q)r;+' [ {E,:j c jmn co6mq5j+ lB:] sinrnq5,I. 

Here V, is the specified flow a t  upstream infinity and V,, the velocity disturbance due 
to each confining boundary. The latter is a Fourier series or integral of the fundamental 
separable solutions of the Stokes-flow equation written in rectangular or cylindrical 
co-ordinates depending on the shape of the boundary and the particle geometry. 

For an infinite periodic array of spheres with arbitrary spacing aligned at any 
normal distance from, but parallel to, the confining walls the expression for V,, is an 
infinite series containing three sets of unknown coeEcients F,,, G,, and H,,. The 
harmonic functions (6.2) representing the velocity disturbance due to each sphere are 
now written in the co-ordinate system corresponding to the boundary chosen and the 
total velocity V set equal to zero to satisfy the no-slip boundary conditions along the 
entire co-ordinate surface of each confining boundary present. These no-slip conditions 
provide three equations, one for each velocity component, which are to be satisfied a t  
every point along the confining boundary. This is accomplished by multiplying each 
of the three boundary equations by the infinite set of appropriate orthogonal functions 
and integrating over the interval of periodicity. This procedure leads to an infinite 
ordered system of three linear algebraic equations in which sets of Fnj, Gni and Hni are 
related to linear matrices involving sums of the unknown sphere coefficients C,,,, 
Ejmn and B,,,. The solutions for the F,,, G,, andH,, are now substituted back into the 
expressions for the V,, in (6.1) and the no-slip boundary conditions satisfied at dis- 
crete points on the surface of each sphere as described in 0 2. The resulting set of equa- 
tions is entirely equivalent to the linear matrix equation (2.12) for the unknown sphere 
coefficients C,,,, Einm and B,,, obtained in the present study. 

The treatment of a confined system of spheres in an arbitrary planar configuration 
of spheres is similar in concept to that just outlined for periodic flow geomet,ries, but 
mathematically more involved. The velocity disturbance Vqoj describing each con- 
fining boundary is a Fourier integral involving a continuous distribution of unknown 
Fourier coefficients k",(t), Gj(t) andH,(t), where t is the transform variable. The procedure 
for determining these coefficients in terms of the unknown sphere coefficients C,,,, 
E,,, and Bjmn by employing the no-slip boundary conditions along the surface of each 
confining boundary is the same as that just described for periodic confined flows 
except that one has to evaluate the Fourier integral transform of the wall disturbance. 
While it is possible to perform these integrations analytically for simple co-ordinate 
geometries and thus find closed-form solutions for $.(.(t), G,(t) and H,(t) the evaluation 
of the inversion integrals is very laborious and must be performed numerically. The 
same difficulty arises for axisymmetric flow and is described in detail in Leichtberg, 
Pfeffer & Weinbaum (1976). Thus, if one wishes to study the arbitrary off-axis motion 
of a single sphere in a circular cylinder, past experience has shown that it is consider- 
ably simpler to approximate this problem as a periodic array of identical spheres in 
which the intersphere spacing is large (say 20 sphere diameters) than to use an infinite- 
boundary Fourier-integral approach. This simplification obviously does not apply to 
finite clusters of two or more spheres. All the preceding comments apply equally well if 

(6.2) 
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the particles are spheroids instead of spheres except that (6.2) is replaced by spheroidal 
harmonic functions (Jeffery 1922). One interesting biological problem in this regard is 
the tumbling of a red cell near a planar boundary. 

The collocation technique used to solve the matrix equation which replaces (2.12) 
for bounded systems is virtually identical to that described herein for unconfined 
spheres. In essence, the undetermined coefficients in the series solution for each sphere 
are used to reduce to zero, on the surface of the sphere, the velocity disturbance pro- 
duced by the incident stream, and all other boundaries, whether they originate from 
another sphere or a confining wall. Thus the general guidelines for the selection of 
boundary points are not altered. The arbitrary planar motion of a single confined 
sphere or periodic array of spheres relative to infinite straight boundaries can be 
separated into motions parallel and perpendicular to the confining wall. Thus, for these 
cases the highly accurate truncation techniques described for the purely horizontal 
or vertical motion of two spheres in $ 3  can be expected to apply equally well. On the 
other hand, for the planar asymmetric motion of finite arrays of two or more spheres 
one would expect to fmd equivalent truncation difficulties to those described herein 
for the settling of two or more spheres at  an arbitrary orientation. 

In  closing, the authors wish to mention two confined problems they are currently 
investigating. One is the motion of a sphere of arbitrary size between planar parallel 
walls. This problem has the important application of the diffusion of solute molecules 
along the intercellular channels between adjacent cells that have been observed in 
electron microscopic studies of endothelial membranes. The second problem is the 
motion of a sphere at the entrance to a circular hole in a planar wall. The application 
here is to the molecular sieving effects that have been observed in both artificial and 
biological membranes. 
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